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ABSTRACT 

The purpose of this paper is  to take stock of what is known and 

to suggest some conceptual  foundations for future progress  in the areas 

of postoptimality analysis and parametric optimization techniques for 

integer programming. 
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v^ I.  INTRODUCTION 

Postoptlmality analysis and parametric optimization teclmiqup;-: .in> 

fully devclopod aspects of  linear programming.""TNieir value  in  practical 

applications  is by now well establishecn^In the  context of integer 

linear programming,  however,   these  aspects have barely begun to be 

developed.     The purpose of this paper is to take stock of what   is known 

about this topic and to lay the foundation for future progress. 

Our conceptual starting point is the notion that,  in practical 

applications,   typically one  is  faced not with a single numerical  integer 

linear program to solve but rather with an entire family of numerical 

problems of interest.    The members of the  family may all have the same 

structure but differ as to the values of one or more coefficients, or 

they may even have different   (but related)   structures.    The scope of 

this paper is limited to the first mentioned case.^-. 

By way of establishing some notation to be used subsequently, we 

write a general finite family of  (possibly mixed)   integer linear programs 

1 k K as  {(P)   ,...,(P)   ,...,(P)   }, where 

(P) 
k k k Minimize c x    subj.to    A x ^ b 

x^O 
x.   integer,  j  t:   I 

k k     k 
Here x is an n-vector, b ,c , and A are given vectors and matrices of con- 

formable dimensions, and I is an index set specifying which variables must be 

k  k      k 
integer-valued. Normally the problem data b , c", and A will vary 

with the index k in a systematic rather than arbitrary way.  In some 

applications it is convenient to think of the data as varying continu- 

ously with a continuous-valued problem index. The most common situation 

3 
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is linear variation of c or b with respect to a single scalar parameter, 

which we shn]l write as: 

(P ) 

and 

Minimize (c + Of)x r.ubj. to Ax = h 

x. integer, j c I 

(PJ Minimize ex subj. to Ax = b + 9r 
x^O 

x. integer, j e I 

where without loss of generality we can assume that the scalar parameter 

0 satisfies 0 < 6 ^ 1. 

How do such families of integer programs arise in practice? The 

answer is that they arise for all of the traditional reasons that spawn 

parametric linear programs and more general sequences of LPs, plus several 

new reasons without precedent in the domain of LP. The traditional 

reasons include the need for sensitivity analysis as a means of exploring 

the implications of questionable assumptions made in the model, tradeoff 

curve development as a way of dealing with multiple criteria, case studies 

to account for aspects that cannot be formulated as a single linear opti- 

mization problem, and so on. 

In addition to the traditional reasons, it is important to recognize 

that families of integer programs arise for technical reasons quite 

peculiar to integer programming. For Instance, IP models have no shadow 

prices or dual variables with em interpretation comparable to that in 

linear programming. In order to determine — even locally — the influence 

of varying a resource level on the optimal value, in general one must 

re-solve the problem with alternative resource levels. This requires 

,. ,.,— |i if!" i u nmm *—>^-TW 1 VVWl ■"!',•". 
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parametric right-hand sido analysis as   in   {V  )  or  some discrete version 

thereof.  The absence of meaningful shadow prices in IP is a manifesta- 

tion of a more general technical difficulty:  neither the optimal value 

nor the optimal solution of an integer program need be continuous as a 

function of the coefficients defining the constraints. Ordinarily this 

difficulty does not occur in linear programming, where small changes in 

*/ 
the data lead to small changes in the results.-'  This property is one 

of ti;e reasons why LP models usually behave "reasonably" from a managerial 

or engineering viewpoint when re-solved with alternative data values. 

Integer programming models, on the other hand, often behave in an erratic 

and unpredictable manner due to the presence of multiple discontinuities 

caused by (necessarily discrete) changes of value for the integer variables, 

It is therefore wise to conduct what might be called a continuity analysis 

study for most IP models in order to ascertain whether or not the discon- 

tinuities in the region of interest are large enough to diminish the use- 

fulness of the numerical results.  Continuity analysis for integer pro- 

gramming is an interesting subject for study in its own right and has 

recently been developed at length by our colleague M. Radke [13], Suffice 

it to note here that the need for continuity analysis provides a strong 

incentive for the development of methods that can solve a family of 

related IPs with an effort less than directly proportional to that 

required to solve a single member of the family. 

This paper is organized around four fundamental questions of rele- 

vance to postoptimality analysis and parametric approaches in the context 

/ 
- This statement must be qualified to account for certain pathological 
cases, and continuity of the optimal solution must be defined in terms 
of point-to-set mappings [13]. 

NST  
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of IP: 

1. Having numerically solved a given integer linear program, to 

what extent can its data be changed without invalidating the 

optimality of this solution? 

2. Having numerically solved one or more integer programs in a 

family of type (P ) , or of type {PQ)» what can be said about ö 
the optimal value and/or solution of other members of the 

same  family? 

3. What  can the user of a  conventional branch-and-bound code  do 

to  achieve better-than-brute-force  results when using  it on  a 

family of related problems? 

4. How can conventional branch-and-bound algorithmic design be 

modified for greater effectiveness when applied to a family 

of related problems? 

We study each question in turn.    An effort is made for the sake of 

completeness to incorporate most of the pertinent results from the small 

extant literature on related topics.      However,    e-optimality 

extensions of exact results are not included here.    Such results are 

very important in practice but are omitted for the sake of brevity.     It 

is usually a straightforward exercise to obtain these results from the 

exact results presented below. 

.'/■ 
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II.  DATA CHANGES THAT PRESERVE OPTIMALITY 

Suppose that the problem 

(r)     Minimize ex subj. to Ax 2 b 
x20 

x. integer, j c I c {l,...,n} 

has been solved numerically for an optimal solution x*.     What change:; 

in the data coefficients will not destroy the optimality of x*  for  the 

revised problem? 

A.     Results Based on Elementary Observations 

Simple but useful results can be obtained with the help of the 

concept of restriction. 

Definition  2.1.     A problem  (Q)   is said to be  a restviation of problem   (P) 

if the feasible region of  (Q)  is entirely contained within that of   (P) , 

and if the objective function of   (Q)   is at least as great as that of   (P) 

everywhere on the feasible region of   (Q) . 

Proposition 2.2.     If an optimal solution x* of   (P)   remains feasible in 

a restriction   (Q)  of  (P), and if it has the sane objective function value 

in   (Q)  as in   (P) ,  then it must be an optimal solution of  (Q). 

The proof is elementary.    The kinds of restrictions for which this 

result is particularly useful are those in which some components of A 

are decreased,  some components of b are Increased, or some components of c 

change in a benign way. 

Corollary 2.2.1. Let A" satisfy A' < A and A'x* > b. Then x* remains 

optimal for (?) with A replaced by A'. (Note that for any j such that 

x* * 0, the corresponding column of A cam be decreased by an arbitrary 

amount.) 

■«.. ^y-   ■-.    ""-7,, ^ ..;-'::■-.■       -->«~ 
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Corollary 2.2.2.     Let b'   sitisfy Ax*  >  b'   >  b.     Then x* remains optimal 

for   (P)   with b  replaced by b'. 

Corollary 2.2.3.     Let c'   satisfy c!  >_ c.   for all  j  such that x* = 0,   and 

cl  = c,  otherwise.     Then x* remains optimal  for   (P)  with c replaced by c'. 
3        3 

> 
Corollary 2.2.4.     Suppose that  (P)   includes   (among the Ax = b constraints) 

upper bounds  u.  on  the variables x.  for j  £  J E.  [l»...»n}.     Let c'   satisfy 

c'   '   c,   for all  j  c  J such that x* = u.,   and c*.  =  c.  otherwise.    Then x* 
]   -    J j D 3 3 

remains optimal   for   (P)  with c replaced by c'. 

Proof.  Apply Proposition 2.2 to the following restriction of  (P): 

Minimize    ex  ^     Z     (c.  - c!)    (u,   -  x.) 
x  >  0 jcJ      ^ :, ^ ^ 

subj.   to Ax = b and x.   integer#   jel. 

The kinds of data changes specified in the four corollaries may,  of 

course,  occur simultaneously without disturbing the optimality of x*. 

Proposition 2.2 is  limited to data changes that cause the feasible 

region of  (P)   to shrink,  or the objective function to worsen at values of 

x other than x*,  or both.     Data changes that admit new feasible solutions 

obviously threaten the optimality of x*;  readily available conditions to 

preclude this possibility seem elusive except for the all-integer case, 

where it is easy to specify small data changes that cannot result in any 

new feasible solutions at all   (cf.   [9]).    Similarly,  optimality is 

threatened by any change in c that can improve the evaluation of other 

feasible solutions relative to x*.    One situation in which the continued 

optimality of x*  can be assured In spite of such a change for c.  arises 

when a lower bound is available on the optimal value of  (?)  subject to the 

additional condition that x. does not take on the value x*.    A typical 
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result of this type is as follows. 

Proposition ^ .J[.  Suppose that a particular variable x. is declared to 

be 0-1 and x* = 1.  Suppose further that the optimal value of (P|X. = Ü) 

is known to be greater than or equal to the optimal value of (P) plus 

a certain nonnegative quantity A .   Then x* remains optimal in (P) 

with c, replaced by any coefficient c. satisfying c. < c. < c, +A.. 

Proof:  Every feasible solution of (P) with x. = 1 will worsen in value 

by c.  c.; x* will remain best among these, and cam become second best 
3 3 

to  a solution with x. = 0 only if c. - c. were to exceed the amount by 
3 3 3 

which the optimal value of (P|X. = 0) exceeds the optimal value of (P) . 

Rut c! - c. < A. and A, is no greater than the latter amount by defini- 
3 3-33 

Lion. 

A value for A .  is available for some variables as a byproduct of the 

solution of  (P)   by some integer programming algorithms — for instance, 

via the "penalties" often computed by branch-and-bound algorithms.     (In 

fact,  simple penalties are readily available at no extra computational 

cost for any integer programming algorithm that begins by solving  (P)   as 

an LP without  the  integrality conditions.) 

Notice that Proposition 2.3 may allow an increase in c.  for j such 

that x* =  1, whereas Corollary 2.2.4 allowed only a decrease.    A com- 

panion result to Proposition 2.3, which we leave to the reader, addresses 

a decrease in c.   for j such that x* = 0. 
j 3 

The simplicity of proof of the results obtained so far should not 

be interpreted as implying any lack of their practical utility.    They 

are quite useful as far as they go.    To go further, however, seems to 

0 
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icquiir moro  olaboral.e tx)mputcition3 th.tt may not always yield posltivi« 

result:..     This   is  the subiect of the next subsection. 

H.     Urs,n11n Based on Sufficient Conditions  for Optimality 

In the case of ordinary linear and convex programming, one can 

derive elegant optimality-preserving ranges on data coefficients by 

exploiting  readily available optimality conditions.     The necessity of 

, these conditions implies that they can be specified numerically at an 

optimal solution x* — typically in terms of an  explicit optimal multi- 

plier vector A*  •--  and the sufficiency of these  conditions enables the 

I desired optimality-preserving ranges to be expressed numerically with 

the help of  A*. 

The situation in integer linear programming is more difficult because 

I convenient necessary and sufficient optimality conditions are not gen- 
I 

erally available.    Only sufficiency conditions  are generally available, 
| 

and their lack of necessity makes it difficult if not impossible to 
I 
i 

i predict whether they will yield useful optimality-preserving ranges on 

the data coefficients in any particular application. 
j 

The most convenient sufficient conditions  for optimality in integer 

> programming are those based on the concept of relaxation. 

Definition 2.4.     A problem  (R)   is said to be a  relaxation of a problem 

(P)   if the  feasible  region of   (R)   contains that of  (P)   and if the 

' objective function of  (R)   is less than or equal to that of  (P)   on the 

feasible region of  (P). 

j 
It is evident upon comparing Definitions 2.1 and 2.4 that relaxation 

» 
and restriction are Inverse relations:     (R)   is a relaxation of  (P)   if 

■N 
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and only if (P) is n restriction of (K). Clearly the optimal valuo of 

any rel.ixat ion (rostriction) of (P) is a lower (upper) bound on the 

optimal value of (P). 

The following evident cx^mpan.1 on result to Proposition 2.2 states 

the natural sufficiency conditions associated with a relaxation. 

Proposition 2.5 .  If x is a feasible solution of (?) and ex is identical 

with the optimal value of some relaxation (R) of (P), then x must be 

optimal in (P)• 

A general method for attempting to construct optimality-preserving 

ranges is this: 

(1) based on knowledge of x*, construct what is likely to be a 

"tight" relaxation (R0) of (P) ; 

(2) stop if the optimal value of (R .^ is strictly less than that 

of (P); otherwise, determine a region over which the data 

coefficients can vary and yet leave x* feasible with an 

objective function value for (the modified) (P) which equals 

that of the optimal value of (the modified) (R ); 

(3) the data coefficient region determined at the previous step 

preserves the optimality of x*. 

It is understood that (R ) is modified in the obvious way as the data 

coefficients of (P) are changed, so that the modified (R ) corresponds 

to a bona fide relaxation of the modified (P) . 

The method as stated requires the optimal value of (R ) to equal 

that of (P). This is a very stringent condition.  Indeed, the obvious 

epsi Ion-optimality version of the method is apt to be far more appli- 

cable in practice.  In either case, the computational efficiency of the 

method depends upon how easily the modified relaxations can be solved. 

V 
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This  is the  same method as is used in  linear programming — although 

usually expressed in different but eguivalent terms — to determine the 

well-known optimality ranges  for objective  function and right-hand side 

coefficients and for  constraint coefficients  corresponding to nonbasic 

variables.     The choice of   (R )   in that case  is the  Lagrangean relaxation 

determined by the optimal multiplier vector of the original  U\ an 

inmediate byproduct of «my Simplex-type method of solution. 

Lagrangean relaxation  is also a natural  choice  for   (R )   in the 

context of integer linear prograrming   [6 ].     To illustrate, suppose that 

the constraints Ax ^ b of   (P)   are composed of two types. 

A.x = b       (general) 

A-x ^ b       (special)   , 

where the second type of constraints are  "special" in the sense that the 

Lagrangean relaxation 

Minimize ex + A (b    - Ax) 
x^O 1        1 

(LP,) 
subj.   to    Ax i b 

x.   integer,   j  e   I 

can be solved relatively simply without the need for an iterative algo- 

rithm for any choice of A i 0   (set.   ( 6J   for several illustrations). 

Suppose further that some particular X    » 0 is available as an inexpensive 

byproduct of having solved   (?)   — perhaps as  the optimal multiplier 

vector associated with the Ax i b1   constraints in some LP problem 

related to   (P).     Then  the previously described method could be applied 

wich   (LR Q)   in the  role of   (R ).     If the optimal value of   (LR Q)   turns 
* A 
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out to be the same as that of {!') , step (2) of the method requires 

solving (LR 0) for different values of c, b and A.  This can be donr 
A 

qaite efficiently   (possibly analytically)   thanks to the assumed simpli- 

city of   (LR Q) ,  provided that changes to A    and b    do not destroy this 

simplicity. 

0, Other types of relaxations  can be used to furnish   (R ).     One possi- 

bility is the group  theoretic relaxation initiated by R.   Gomory.     Shapiro 

[16]  has recently worked out the details of a procedure  for the all 0-1 

case that can be viewed as  the above method with a particular group 

theoretic relaxation   [1]  in the role of  (R ).    The procedure has not been 

implemented computationally. 

An entirely different source of sufficient conditions for integer 

programming optimality derives from the many equivalent representations 

into which any integer linear program may be cast, as by applying  nonsingu- 

lar transformations of various kinds.    Some of these representations may render 

totally obvious the optimality of a particular feasible solution.    Think, 

for  instance, of the equivalent representation given in  the final tableau 

of the ordinary Simplex method.     By inspection one can see that an optimal 

solution is obtained by setting the final nonbasic variables equal to 

zero;   for this leads to feasible values of the basic variables,  and a 

nonzero value for any nonbasic variable could only worsen the objective 

function value.    All of the standard sensitivity/ranging results  in 

linear programming cam be deduced easily by simply Perturbing  this 

equivalent problem representation as necessary to correspond with 

D 

0 
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perturbations  of the  original  problem,  and tihen determining by  inspection 

whether the associated solution of  the perturbed original problem is 

ntill  feasible  and optimal.     The  same approach can be  attempted in 

integer linear programming,   though not necessarily using the  same 
■ 

class of nonsingular   (Gaussian pivot)   transformations.     Bowman has 

developed this  approach  in  the  all-integer case  for a  class of trans- 
I 

formations  leading to so-called Hermitian basic solutions   [ 3 ] .    it has 

not been shown,     however,   that a representation of this  form correspond- 
1 

ing to an optimal solution   exists for an arbitrary all-integer 
I 

linear program.        Computational  implementation has not yet been under- 

taken . 

Fleisher and Meyer   [4]  have very recently proposed some new suffi- 
I 

cient optimality conditions for pure and mixed integer linear programming. 

They are currently investigating the possible usefulness of these condi- 

tions for sensitivity analysis. 

K i i 
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in.     FAMILIES  WITH A SINGLE PARAMETER IN THE OBJECTIVE FUNCTION 
OR  RIGHT-HAND SIDE:     DRAWING  CONCLUSIONS 

AFTER SOLVING  BUT A FEW MEMBERS 

Q 

In Sec. I we defined the P -family to be parametric in the objective 

function, 

(P ) Minimize   (c +  6f)x    subj.  to    Ax i b 
x^O 

x.   integer,   j   e  I 

and the P -family to be parametric in the right-hand side, 
6 

(P ) Minimize ex subj. to Ax I b + Or 
6 x>0 

x. integer, j E I . 

In both cases we may take 0  <_ Q  <_ 1.    What can be said about the optimal 

values or optimal solutions of other members of these families after 

having optimized for one or more values of 6?    Ideally we would like 

to be able to infer optimal solutions for different values of 6, but 

partial information is also of interest. 

It is clear that the results of the previous section are applicable 

here.    Corollaries  2.2.3,  2.2.4,  and Proposition 2.3 are pertinent to 
Q 

the P -family, Corollary 2.2.2 is pertinent to the P -family when r * 0 
9 

or r i 0,  and the method based on Proposition 2.5 is pertinent to both 

families and rendered much simpler because data coefficients can vary 

only in a one-dimensional fashion. 

It will be convenient to discuss the two families of problems 

separately. 

A.    The P.-Family 

An important distinction is whether or not the P -family is monotone. 
ö 

1 

a 

r. 

0 

D 

0 
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W Definition  3.1.    The P -family is  said to be monotone if  r 2 0  or r <  0. 
I ' 0 

otherwise  it  is said to be non-monotone. 

It  suffices to discuss  the  case  r i  0,  as  the  case  r £ 0  can be 

I reduced to the  former case via an  equivalent parameterization y   =  1-0 . 

The obvious and essential characteristic of a monotone P  -family 

is  that the members of  such a  family are  nested restrictions of one 

■ another or,  what is  the same  thing,  are nested relaxations of one another 

(depending on whether one views 9   as  increasing from 0 to  1  or decreasing 

from  1  to 0). 

^ Proposition  3.2.    When r £ 0,   the  optimal value of   (P.)   is monotone 

nondecreasing on   [0,1]   and any solution feasible at 9'  remains  feasible 

for all 6  ^9'. 

t 
Corollary 2.2 3 .    When r = 0,   any optimal solution of  (P   ,)   remains 

optimal at all 6 >_ 9'   for which it remains feasible. 

For any pure integer problem having a bounded feasible region at 

9  = 0,  Corollary 2.2.5 (which,  as  the numbering indicates,   is based on 

Proposition 2.2)   implies that only a finite number of reoptimizations 

need be performed if 9   commences  at 0 and advances to 1. 
I 

There is very little that can be said in general about a non-monotone 

Pe-family because then changes in 9   shrink some parts of the  feasible 

region while expanding other parts.    Nothing like the two results above 

is generally true. 

Whether or not a P -family is monotone, however,  lower bounds on 
ö 

the optimal value over all 9   are usually available as a relatively 

inexpensive byproduct of having solved any single member of the  family. 

I 
■\ 
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,v The reason is that the solution  to an  integer linear program usually 

involves  the generation of  reasonably good relaxations of it,   the most 

important types of which can be  solved at other values of 0   to yield 

corresponding lower bounds.     This is particularly convenient  to do with 

the conventional LP relaxation,   for which efficient parametric linear 

programming techniques can be used,  and also with Lagrangean  relaxation 

when Or  does not upset the structure of the "special" constraints   (see 

Sec.  II.B). 

Such lower bounds can be used in conjunction with upper bounds 

obtained from known feasible solutions to obtain hopefully useful 

epsilon-optimality conclusions about members of the P«-family not yet 

explicitly addressed computationally. 

6 
B.     The P -Family 

6 
The P -family is a good deal more convenient to work with than the 

Po-family. There are two reasons for this. One is that changes in 9 

do not affect the feasible region, and the other is that the following 

very strong characterization is available of the optimal value as a 

function of 9. 

g 
Proposition  3.3.    The optimal value of   (P )   for 0 ^, ^ <^ i is piecewise- 

linear,   continuous, and concave on its finite domain. 

This well-known result(e.g., [101)   is a direct consequence of the 

e 
fact that the feasible region of P    can be replaced in principle by its 

convex hull   (the so-called integer polyhedron)  without altering the 

6 
optimal value, thereby reducing the P -family in principle to the case 

of ordinary parametric linear programming in the objective function — 

0 
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a case  for which the given  characterization has  long been established. 

In most applications the feasible  region will be bounded,   in which 

case there will be a finite number of  segments to the piocewi se-l inear 

optimal  value  function on   [0,1] .     Thus  the  P -family is  inherently 

finite rather than infinite. 

The great utility of Proposition   3.3,   in conjunction with the   fact 

that 0  does not affect the  feasible  region,  is  illustrated in Figures 

1A and IB.    The  first figure depicts the objective function value,   as a 

function of 9, of the optimal solutions to   (P )  and  (P )   and also of an 

intermediate  feasible solution x to one of these problems.     The shaded 

area represents the region of uncertainty concerning the optimal value 

6 
of   (P ) .     The second figure  illustrates how the region of uncertainty is 

diminished after solving   (P'   ).     In these  figures and in general,   the 

upper boundary of the region of uncertainty — call it UB(0)   — is deter- 

mined by the lower envelope   (pointwise minimum)  of the linear functions 

k k Ik ex    + Ofx    determined by the known feasible solutions x   ,...,x  ,...   to 

(P ), while the lower boundary — call  it LB{0)   ~ is determined by linear 

interpolation between the plotted points corresponding to the optimal 

values of the solved members of the P  -family.    The validity of UB(*) 

is evident from the fact that 6  does not affect feasibility, while the 

validity of LB(')   is a direct consequence of Proposition 3.3. 

In the illustration of Figure 1 and in most other cases ono can 

contrive,  the optimal vajlue of   (P  )   as  a function of 9   is pinned down 

guite quickly as successive members of the  family are solved,  especially 

if a little care is taken to choose each new member to be solver! in  such 

a way that its 9  tends to coincide with the maximum difference UB(0)-LB(O). 
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In fact,   it is easy to see that the difference is reduced to 0 over some 
n 

interval whenever the optimal value of  (P )   for some new choice of 9 

happens to coincide with the current UB (•)  or LB (•)   function.    Thus in 

2 
Figure IB an optimal value of  (P*   )  equal to üB(.2)  or LB(.2)  would 

completely eliminate the region of uncertainty over the interval   [0,1/2] 
Q 

(the optimal value function for  (P )  would necessarily coincide with 

ABC in the first case and AC in the second) . 

It was noted in  connection with Proposition 2.3 that lower bounds 

are often available   (e.g.,  from penalties)  on  the amount by which the 

optimal value of a problem would increase if one of the integer variables 

were forced to take a different value from its value in the computed 

optimal solution.    Such bounds can be used in conjunction with the UB(') 

bounds to yield simple sufficiency tests for whether a variable can be 

fixed at a certain value for a certain 9-interval without loss of opti- 

mality.    For instance, suppose UB(')   is as shown in Figure 2 after having 

solved (P )   and  (P ).    Suppose further that the 0-1 variable x.    takes 
30 

on the value 1 in both x*(0)  and x*(l).    Let A     [resp. A ]  be a penalty 

(lower estimate)   for the increase that would be caused in the optimal 

value of  (F )   [resp.   (P1) ] by forcing x.    to have value 0 rather than 1. 
30 

It follows from Proposition 3.3 that the dotted line is a valid extension 

of the two bounds to the entire interval 0 <_ 6  < 1, and hence that x. 
^O 

can be fixed at 1 without loss of optimality for 0 <^ 9 £ 9    and 9    <^ 9 <^ 1, 

where 6    and 6    are the points at which the dotted line intersects UB(-) 

in Figure 2. 

U U 
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Figure 2 

It is easy to devise a number of variants of the result pictured 

in Figure 2.  Any attempt to formalize the general case would only 

obscure the inherent simplicity of the underlying rationale. 

We have previously noted the common availability of various lower 
a 

bounds on the optimal value of (P ) as a byproduct of relaxations used 

to solve one or another member of the family.  If such bounds are avail- 

able they can be used to strengthen the interpolative LB(-) bounds 

mentioned above. 

Corollary 3.3.1.  If LB(«) is the previously defined lower bound function 

g 
on the optimal value of  (P )  and lb(*)   is another valid lower bound 

function   (perhaps obtained from some relaxation) ,  then the upper concave 

envelope of LB(-)   and lb(>)  is also a valid lower bound function. 

Figure 3 illustrates this corollary of Proposition 3.3 for a situation 

where  (P )   and   (P )   have been solved, yielding points A and D, and where 
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two relaxations yield two other lower bound functions on the optimal 

n. 
value of (P ) .  The upper concave envelope ABCD is also a valid lower 

bound function. 

3 
■H 
ra 
> 

o 
■H 

o 
c 
iu 

> 
■H 
■P 
u 
<0 
•n 
.Q 
o 
I 

p 

Figure  3 

n 
One additional result can be stated for (P ) , namely that the 

individual objective function components cx*(ö) and fx*(9) vary mono- 

tonely on [0,1] for any optimal solution x*(e). The result is well- 

known from other contexts and is  easy to prove. 

Proposition 3.4. If 0 <_ 0 l0o' then cx*(0 ) ^cx*(0 ) and fx*(0 ) ^ 
X ^ J. £, J, 

fx*(e2). 
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IV.     USING CONVENTIONAL BRANCH-AND-BOtJND WISELY 
TO SOLVE A FAMILY OF  RELATED  PROBLEMS 

I'rovious  sections have dealt with  aspects  that are  largely indo- 

pondent  of the computational method used to  solve individual members 

of the  family of integer linear programs being  addressed.    The presump- 

tion was  that only conventional methods were available.     In this section 

we are concerned with how to exploit  the inherent flexibility of conven- 

tional integer programming methods so as to enhance their computational 

efficiency for solving families of related problems.     Serious modifica- 

tions to conventional methods are deferred until the next section; here 

we shall make use only of the user options available with most integer 

programming systems. 

Most of the observations made in previous sections provide directly 

applicable guidance for the effective use of a given integer programming 

code.    When confronting a family of problems, one should plan to solve 

the members in a sequence that enhances the opportunities for the results 

of Sees.   II and III to yield useful information.    One should be especially 

alert for partial orderings of the family based on the relation of restric- 

tion   (or relaxation). 

Nearly all branch-and-bound algorithms have provision for user- 

supplied bounds, both upper and lower,  on the optimal value of a problem. 

Such prior information usually improves the performance of the algorithm 

until better bounds are found in the course of the computations.    Prior 

knowledge of a good feasible solution is useful  for the upper bound it 

provides on the optimal value,  and also as the optimal solution itself 

in case the algorithm should demonstrate that no better solution exists. 
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Knowledge of part of  an optimal solution can be  used to  reduce  the  size 

of the problem by fixing the appropriate variables permanently at their 

optimal values.     These kinds of prior information -- part or all of an 

optimal or good  feasible solution,  and lower and upper bounds on the 
t 

optimal value --  are  frequently available  at nominal  computational  cost 

for other members of the problem family upon  solution of one member. 

So it is important to select the order of solution  carefully. 
I 

The  family of  integer programs  rendered most tractable by the 

observations of Sees.   II and III  is probably  the P -family.    The dis- 

cussion attending Figure 1 even suggests  an efficient procedure  for 
( k+l selecting the next choice 9   at which to optimize depending on the 

1     k 
outcomes for 0 ,...,6 .  See Sec. V.D of [ 9 ] and Appendix 9A of [13] 

. 

for details conceminq such procedures. 
( 

The second most tractable is the P -family when it is monotone. 
e 

A  natural    (and finite)   sequence of 6 values for optimization in the 
I 

1 k+l pure integer case is to begin at 8    =0 and to select 0        as the value 
1 k 1 just below which the optimal solution for 6    becomes  infeasible  (refer 

i I 
to Corollary 2.2.5).    The opposite direction of traversal is attractive 

1 
when only a finite subset of G's in the unit interval is of interest, 

* 
since then the optimal solution for each problem must be a  (hopefully 

i 

good)  feasible solution for the next. 
; 1 

More generally, and beyond the usually obvious ways of using the f 

» i 
results of Sees. II and  III, the challenge faced by a user with an entire 

if 
| I 

family of problems  to solve is this:     how can one take advantage of the 
I i 

information generated by the solution to one member in order to reduce 

the amount of computational work necessary to solve another member? 
1 I 
! 
I 
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Some possible answers to this question are  as  follows. 

1. Take the optimal solution to the first problem and try to 

modify  it so  as to be a good feasible solution to  the next problem. 

This can be  approached as a manual  revision based on insight 

into the nature of the problem family   (e.g.,   reduce  the 

levels of the  least marginally profitable activities in 

order to accoinnodate a reduced resource level).     It can 

also be approached more  formally,  as by using linear 

programming  to reoptimize the continuous variables with 

the integer variables held at their optimal values from 

the first problem. 

2. Assign at least some branching priorities based on an 

analysis of the solution history of the  first problem. 

Generally it is desirable to branch early on the integer 

variables which have the greatest impact on the solution, 

and most commercial codes have provision for user-supplied 

branching priorities. 

3. Initialize the pseudocosts  [2 ] [ 5]   at values obtained while 

solving the  first problem. 

4. In a large problem,  solve the initial LP relaxation as a 

revision to a basis stored from the  first problem. 

Ü 
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V.     REDESIGNING BRANCH-AND-BOUND TO  SOLVE 
A  FAMILY OF  RELATED PROBLEMS 

W(} now consider how  conventional brnnch-and-bound could be modified 

to deal more effectively with entire families of integer linear programs. 

At least three approaches are possible: 

(i)     proceed in the  same spirit as  Sec.   IV,  but perform additional 

calculations  in the course of solving each problem expressly 

for the purpose  of providing added information for subsequent 

use when solving other members of the family; 

(ii)    generalize in a natural manner the basic concepts of branch- 

and-bound from the context of a single isolated integer 

problem to the context of a family of related problems; and 
i 

(iii)     devise a procedure for recovering satisfaction of the 

termination conditions by which branch-and-bound demonstrates 

the optimality of the  final incumbent. 

Each approach is discussed in turn.    See   [9 ]   for additional discus- 

sion and computational experience pertinent to all three approaches. 
\ 

A.    Additional Calculations to Improve the Conventional Approach of Sec.   IV 

Sec.  IV described how conventional branch-and-bound codes could be 

adapted without significant internal modification for use with an entire 

family of problems.    That discussion is suggestive of the kinds of 

internal modifications that might be useful.    Probably the most important 

ones would be   (a)  the generation of additional solutions which are likely 

to be good feasible solutions to other problems in the  family,  and  (b) 

the generation of improved lower bounds applicable to other problems in 

the family — as by reoptimizing the initial LP relaxation for the entire 

family at the time the first member is undertaken.     The options are,  for 

the most part,  self-evident.    For this reason,  and also because a detailed 

i i 
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discussion would have much in common with  the  development of the next 

subsection,  wo shall  describe here only a proixisal   of Piper >iml X.oltner.1 

112]   for the pure  integer case that has been  tested computationally. 

Piper and Zoltners address primarily the case where every member 

of the  family has the  same  feasible region: 

(P) Minimize  c x    subj.   to    Ax ä b 
x^O 

x.  integer,  all  j 

for h =  l,...,ll.    They propose a very simple modification of the  usual 

branch-and-bound fathoming criteria so that after solving   (P)   ,  say, 

instead of having as  the  final  incumbent  a single optimal  solution of 

1 1 k K 
(P)     one has  a set of  feasible solutions {x  ,,..,x   ,...,x }   satisfying 

the property: 

(1) Z   = Max{c x,cx,...,cx}<_cx    for all x feasible in   (P)    other 

than x  ,x ,...,x . 

Roughly speaking, one has the K best feasible solutions of  (P)   .    The 

revised fathoming criteria allow the user to prespecify an upper bound 

both on K and on the amount of permissible suboptimality   (i.e.,  on 

Max{c x ,...,c x }  - Min{c x  ,...,c x }). 

1 K 
The hope  is  that one of the  solutions {x   ,...,x  },   and in particular 

the one which minimizes  c x over this set, will be optimal in   (P)     for 

h ^ 1.    A sufficient condition for this to be so is 

(2) Min{c x  ,...,c x  } <_ optimal value of  (P)    with c x ^ Z    appended  . 

The sufficiency of   (2)   follows directly from  (1)   and the  fact that for 

every feasible solution x of  (P)   ,  either cx<Z    orcx>Z.    Now the 

, ■■•■ v 
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I eft-hand site of   (2)   is easy  to compute, but  the  riqht-hand side  is 

not.     So various  simple underestimates   (via relaxation)  of  the  riqht- 

hand side of   (2)   are  introduced to simplify this  sufficient  condition 

(at the expense,  of course,  of weakening it).     For instance. 

(3) Min{c x   ,...,c x   }   < Min c x    subj.   to    Ax ^ b 
x^O 

1 ^1 c x >  Z 

is sufficient for the optimum of  (P)     to be in the  set  {x   , ...,x  }  because 

(3)   implies   (2). 

In  computational tests on  several standard pure  integer test problems, 

judicious application of these ideas led to only a modest amount of extra 

1 K work to  find {x  ^...x  } and yet  this  set reliably contained the optimal 

solution for a surprisingly wide range of deviations from c   .    Sufficient 

condition   (3)  and others were successful in proving   (2)   a high percentage 

of the time, particularly when the deviations from c    were small. 

Probably the major shortcoming of the Piper-Zoltners approach is 

that it  is impractical for mixed integer programming, and probably also 

for pure integer programs with a large number of nearly optimal solutions. 

B.    Direct Generalization of Branch-and-Bound 

Ordinary branch-and-bound addresses a single integer programming 

problem.    Yet many of the basic concepts generalize naturally if one 

replaces the single problem by a related family of problems.    Each 

relaxation could be replaced by a family of relaxations,  each branch 

could be applied to all members of the family, the incumbent solution 

would be a family of incumbents,  and so on  (cf. pp.   15-16 of   [9 1). 

The exact nature of the generalization is not unique;  several variants 

appear worthy of investigation. 

. 

tgam ' ^ ^■1'j M| jpmi i.»nm."' 
^^Sir 



-27- 

Marstan and Morin   [ 8 ]   have  recently worked out the details of 

one plausible Dakin-class variant for the pure integer case in which the 

right-hand side varies parametrically  (i.e.,  the Pfi-family).    They assign 

a distinguished role to   (P  )   in that  the only LPs ever solved have 6 = 0, 

the optimal multiplier vectors of which are used in the natural way to 

obtain dual bounds  for all  0 ^ 0  f_ 1.    Feasible solutions found at one 

value of 0  are  feasibility  checked for other values of 0   and used accord- 

ingly to update the incumbents.     Branching is always performed simultane- 

ously and identically for all  0 <_ 0  <_ 1, and a candidate problem is not 

considered fathomed until it is truly fathomed for all 0 5_ 6 <_ 1.    Pre- 

liminary computational experience for three monotone capital budgeting 

problems looks promising. 

C.    Recovery of the Termination Conditions of Branch-and-Bound j 

Postoptimality analysis and parametric techniques for ordinary linear 

programming can be viewed naturally in terms of recovering the standard 

termination conditions associated with the Simplex method.     These condi- 

tions consist of nonnegativity requirements   (or nonpositivity requirements, 

depending on sign conventions)  on the border of the final  "tableau."    The 

tableau corresponds to em equivalent representation of the original LP 

problem,  and satisfaction of the nonnegativity requirements renders 

completely obvious the optimality of the associated basic solution. 

The termination conditions associated with a branch-and-bound 

method are of a different sort.    There is no final tableau.     Instead, 

there is an exhaustive partition of the solution space of the original 

integer programming problem along with proof that no cell of this j 

partition can contain a feasible solution superior to the final 

0 
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incumljent. This partition is specified by the fathomed nodes of the 

complete branch-and-bound tree. The tests by which each of these nodes 

is fathomed are just sufficient conditions — usually based on some 

■ convenient relaxation — that no feasible solution corresponding to the 

node could possibly be superior to the final incumbent. 

Just as in linear programming where one can revise the original problem 

and check whether the correspondingly revised final tableau still satis- 

fies the termination conditions, so in integer programming can  one revise 

the original problem and check whether the correspondingly revised parti- 

tion of the solution space can contain a feasible solution superior to 

the best known feasible solution of the revised problem. Naturally this 

requires recording information concerning successful fathoming tests 
j 

during the course of solving the original problem.    And just as one can 

continue applying the Simplex method  (either primal or dual)   in order to 

"clean up" any violations of the terminal conditions of the revised LP 

problem,  so in integer programming can one continue to apply the branch- 

and-bound method to fathom  (refining the partition if necessary)   any 

nodes of the revised partition that are no longer fathomed by the natural 
I 

revisions of the originally successful fathoming tests. 

The pioneer of this approach to postoptimal analysis and parametric 

techniques in integer programming is G. Roodman [14/15] . His first paper 
1 

on the subject developed details in the context of E.  Balas* well-known 

additive algorithm.    Limited computational experience with small problems 
i 
| 

suggested that this approach may be several times more efficient for 

solving a handful of related integer programs than the brute  force 

method of solving each member of the family from scratch.    This paper 

•' 
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inspired Piper and Zoltners   [11]   to rework and refine Roodman's treat- 

ment, with particular attention to questions of efficient computer 

implementation.    No computational  results were presented.     Roodman's 

second paper   [15]   recast the development in the far more interesting 

context of LP-based branch-and-bound.    This is an important contribution 

to which we  cannot do justice here.     The details are intricate,   though 

straightforward from the viewpoint proposed here  if one is  sufficiently 

facile with postoptimal analysis in LP.    Encouraging but very preliminary 

computational experience was  reported. 
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VI.  CONCLUSION 

The theory and computational techniques currently available for 

parametric and postoptimality analysis in integer linear programming 

are clearly in an  early stage of their development. They are built 

almost entirely on: 

(a) elementary bounds related in one way or another to the 

complementary concepts of relaxation and restriction, 

(b) the concavity of the optimal value of the (P )-family 

as a function of 9, 

(c) the conmon sense exploitation of the user options available 

with most branch-and-bound codes, 

(d) a natural generalization of the branch-and-bound approach 

from a single problem to an entire family of problems, and 

(e) the notion of checking and reestablishing by further compu- 

tations, if necessary, a set of sufficient conditions for 

optimality (these sufficiency conditions can be expressed 

in terms of a relaxation or an equivalent problem repre- 

sentation or a partition of the solution space satisfying 

certain properties). 

There is little opportunity for further conceptual development of 

(a) and (b) . What is required now is to bring these concepts into wider 

use. 

Area (c) is a highly cultivated ad hoc art among experienced prac- 

titioners of integer programming. Available folk wisdom needs to be 

pulled together and tested via systematic computational studies. 

The big gains remaining are in areas (d) and (e) . The major con- 

ceptual options for (d) are clear at this time. Proper computational 

testing will, however, require the most careful attention to the data 
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structures used to support computational implementation.    Comparative 

performance on large or difficult problems of alternative algorithmic 

options is known to be exquisitely sensitive to the choice of data 

structures used to implement them.     The design of supporting data 

structures  is also critical in area   (e).    Additional conceptual develop- 

ment in this area is needed to find new and useful sufficient conditions 

for optimality that exploit knowledge of an optimal solution   (better 

relaxations or equivalent problem representations or perhaps something 

entirely different). 

What new work remains to be done beyond the  five areas discussed 

above?    One major new direction would be to develop tailored techniques 

for various  special but important classes of problems.    We have made 

virtually no assumptions in this paper concerning special  features of 

problem structure;   it stands to reason that present methods could be 

improved and new methods developed if the problem setting were to be 

specialized.     In this connection,  one should be especially alert for 

strong characterizations of the optimal solution or its value as a 

function of parametric data changes   (recall how useful the concavity 
n 

property of Proposition 3.3 proved to be  for the case of the P -family) . 

Another worthy line of development would be to attempt natural 

generalizations of other approaches to integer programming besides 

branch-and-bound.    This paper has confined attention to branch-and- 

bound because it is the only generally successful approach known at the 

present time.    Yet it is possible that a cutting-plane, group theoretic, 

or other approach may prove superior for parametric and postoptimality 

analysis once some member of the problem family has been solved. 

U 
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Nauss   I y )   has shown,  for instance,  that Gomory cuts lend themselves 

quite  readily to such use in principle — although no computational 

studies have yet been made.     Cutting-plane  theory seems to be well- 

enough understood now  (e.g.,   [7 ])   that it should be possible to devise 

strong cuts  inexpensively in the context of reoptimization. 
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